Removed test files, added Notes 09.10.2025

This commit is contained in:
Simon Lübeß
2025-10-11 15:48:41 +02:00
parent 3efb7f3fac
commit ed69bc7253
4 changed files with 41 additions and 246 deletions

View File

@ -11,12 +11,10 @@
"id": "5160c41cbad83466",
"type": "leaf",
"state": {
"type": "excalidraw",
"state": {
"file": "Motivator.excalidraw.md"
},
"icon": "excalidraw-icon",
"title": "Motivator.excalidraw"
"type": "empty",
"state": {},
"icon": "lucide-file",
"title": "New tab"
}
}
]
@ -169,16 +167,17 @@
"obsidian-excalidraw-plugin:New drawing": false
}
},
"active": "5160c41cbad83466",
"active": "69a5c474fe4b0e88",
"lastOpenFiles": [
"Motivator_Images/CarteBlanchePc.png",
"Notizen/09.10.2025 - Anmeldung.md",
"Motivator.excalidraw.md",
"Drawing 2025-10-10 14.07.05.excalidraw.md",
"Notizen",
"Welcome.md",
"Motivator_Images/CarteBlanchePc.png",
"Motivator_Images",
"Motivator_Images/uppygradey.png",
"Drawing 2025-10-11 00.04.57.excalidraw.md",
"Untitled.md",
"Excalidraw/Motivator.excalidraw.md",
"Excalidraw",
"Textdokument (neu).txt"

View File

@ -1,222 +0,0 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
# Excalidraw Data
## Text Elements
%%
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBGADYEmjoghH0EDihmbgBtcDBQMBKIEm4IACUeABF8ADkAVlwAVXq2AFFGgA0AMQBFHkIWzH6YVJLIWEQKgDNAhE8qflLM
bmcAZkbkxN3EnkaATgB2RO2DlchxtGcAFkbGhPjDgA54ngAGePjj+JfjxqXCAUEjqbgbRJAyQIQjKaTcb4bbQbFEbW5bD6NF5HDYvIHWZTBbgfIHMKCkNgAawQAGE2Pg2KQKgBieIINlsialTS4bCU5QUoQcYh0hlMiTk6zMOC4QLZLmQWaEfD4ADKsCJEkEHgVEDJFOpAHVQZJuHxCgJyVSEOqYJr0NrykDBXCOOFcmh4kC2DLsGprqh4h8SRaI
ALhHAAJLED2oPIAXSB81wmWj3A4QhVQMIwqwFVwH11guFbuYsYzWdDYUW3EOJx+Hwh5smDCYrE4ZshocYLHYHHaHDECJeHxeGx4PAb2eYNXSUBraFmBDCQM0wmFHWCmWysYTQKEcGIuHnxARp2Drw+PEOtxeeNDRA4lPTmfwQIZfIXqCX+BXobgbA5jk+QWmABSTCUIYQWAHygYmoHgRBUFIdoeyJP8Xw/H8AJwZcYGgTBeFgPEyKouijSYtihwb
DhEHwRBiGTM4HyoXsBwnGc+yAgRjyomiGJYjitGTPRkyMSUzGsbs7GnOc3HQccpEouRlFCY0uEIQRzhxGhMmcRcBHxLcUnoccmG/P86l0Xh4lgHcRHPEp/EUYJ1HCSUoklLZzhdtBBxOSprk0VZIk2Vp97QeOJkYd8FnuWAnn4dBzhBkRGyHAFAlUcFGkMVp7wmXpclEbcOx7DFWGWblYn5cZulHLJXFEY0SJ8YF2XxYl3l/ERiQkW1WVqdVXlaZ
8vUvNFZmxdhIUeWFyUToVDX6fJEHHHV5VTZVnXzRB2m+RBY6ZS52UvMNSV7TwEWHRlA0nTiZ3WZpyUbMhkw3pN5kzed3njg5wafdNVVPXlL06Wxy3FYZHwbbsFVxbNCW7UxaL/Ypd2qdRj2hc9e1oktHFQ9BQa3WRg1Yz9WkQg5BVofD30gzVL0HZMiLHZjuKU8zNOtWT90U3RFqeRAcCBGWIjhPkwusPombHggAAKYvMBL3DkkICDvqEUB0vo+h
qCeCuAfKaAVvghQAL4rMUpTlBIkhsMozAvArABWtwtKqCsIBQxwAPIw/gyiHAA0rq0ziOg8wIIs5DLKGaw3Li4PSZDTWhgGdzHBN9wbO8q2QCCxBgmg61QjCcJQOCsOcbcN5GR86ctgS9pvXqVrUqKjIshy7JIKuvL8sWIr0t3ErkBw0qylkVdJsqaoapHer0k6VYdwgxrF6aaDNqU+rWra9rLzqzrCK67oIt6vr+giwZAuGB7RruwvJqmp6m6+2
a5on6C4PERbrmIKWcsn8qwx3foGD41EGo/GupAHs7YuA71uECBBfYBxDk9McQ4RlDiJFuLcXekBCAzjnF+H8f4WxriFMQTcGQZ7P33IeeWECfiJAvCOa8LxdjvhzM+D+lYWwfmpBAihmt/zG2AmgcStk3qQS5hBIMBNGoGWgrcBRrMU5cUJk3CCNdth11uA3LiGiShGWUStXqpjiJwJKNjOauNJgTn+tYngLMzFaIMfXW4jcDjWKivVHRqjFFlV2
F4oxPiTGMxGpFUJ2iVEFzMRNNC4TjF+OiRdSYPiLFEwgp8EyqTInpJxqDPRNciq6KcZ4/B3jfGIy6jxORYA3HWMaCggibiCk1IiXU1pcSKnBKcckvYhTekZNsuwtKsFxkEX2DkypJRXpdMMWk+pyMSg8IIuOax6E0rVJWUUtZjiShmTSuomZCkiGLPOSUpma0tEDMSWAfGKTumrOsWXLZ+i3mHI+e0yK3yDljJEkLIEot3QS0YVWQgst8DyyVhCw
IatSAay1mSXW+sZCLCNkBF8KpLbW1DHbdAjQABqPAABC9QhD6BeKQUlABZewbAYCUlVAAcTYLgAAWuHeAS9o6x0oLqH+mxvhKQOM8Fq+cgSZ3SjnaVgzgQmnBG3aEsJ4Sl15spcmuJ8QcEJJHNu+9O6j3FOgVkfdOQDz5A/YUXdzXQAnlPOUs9QxKhVIfJejpTyknXpvEuvA/UGhtIvCoPqAF+EkMAy+oYfS8hvp6O+oYH5RhjFLJM5A354rfES7
++YeCRpLBfARuaWzVggTwCEhxGiTm4agtsfZuDYIbb2TgGDI7ol+NnI4cCyikOCCebgYjVyALoduKRcZhYHiPEOrB7CoEjlerWlmEBHz8NQGbd8bBPyiOXOIlsAEgK7mOYRAi0zbkxL2u4uyLE6ZbQRtY5w6NUTrSvPxAEREL0ONKUxWxMEn2pQ6YB/qr6fFVq7U8m5P67lMXeFYi5e0jJEXsUjU9KVeJgffZBlxiG4OYZRG+iDwUHI8EAzeoy5G
HKJEAy+wj4GP1PL+LRpyRHGNEU+CxvibGcMdLI3hiSPxWMMd435fZtSomXsyYJ0J60RylUshxwFEnikwavfh4T2GSMdJowJuy5i9hyZhqZJ5nTXlAsk2p6T+ntU0RE9pvycTRmWbQ7+wTKcjMKc/R01DDTkriu4/Z7zflfPrP03e3YnmTMcdC+h4ZiQouKZ80+ujdmtPBbybFtzdlZO3mM0lkLT7YaJYy0Mp9tmeMObyal94rwXhXXzoBzTxHSsl
BaXpyShm8tedM9B1zsHILzMGW12ztW7wNdU/19TZiJWNClXnYbzTQMojG/Vt4k2/N5KG6Z79U3rPaslTWhbTGssDbAOUtOi2hN8VWxNo52WLtBKYwRhbdW7vWMewkhyo2uFrca3pz7ljDLLde+N9b92zuA9yazXbm2snbaIqTFbv33sA5Q64hHBFTvTeaejvTEXU5Pbx1J2RxOrPdWa+xrHT6rlgHi7XFTEOcfOBe5V1rxFYdhefZT0Tij+Mk60k
jtLLWmPKZ6S5uHgmQds6Y05n5wLyf5Qq0FnbgHWcq6U1xrDIuONy4sxtrnjlAvpaea9GnTS0Q09p5zDrVaedVayQThn4uDfof8sbnXBFSo0/Vyb5qnO3e+899BNpyzGc+/t+zrEEePdU+guwmP2u48QX2In+jfvZl9cl3ZHgxXuvRdmbpgXC1lcZ/j3rlTVupIlaeehMPLvzfV/zwVtaAfsspXizXoiZl69pK1+n4Prfe9FMA3n+TBfLmAYJ13gi
xxxMN46535v7O5/D98SlyPTzV/mcrx1sf+WV/z77x16XGvZ9H5Hyfzf3eL/r8FpekWytIUZuhbC+FT+kVoHVge0ocL0UGExUNkkRzQJUKBtmIQgQgH6HwAAEFIxehlBNBlB6BegFZ6AKV4gGUABNEOfQW4ClGAvlGYCQQVJYEVdYKtOjQ7RVAuCAOVO8bQXOGVUMIuQNNpcuDVKuUuf5UoFuI1YNa0B1HuK1fuUMHkW1YeIQ8eKUGUV1XUD1BeO0
b1FeX1NeENANbeINNQg+MNLUFQyNc+MsWNFseNP0WAW+NuVNJ+F/FsV+BANMUtL+YgPMCQXADYItIBEtTdUBctcBW+H4ccZ4PtNBDsNARIQ4VtRBDtW+T4TCXEVdEhWcQdchfdUdGhcdBhGw0oGdFhM8BdS8POUcWg9dHNbdXdYdVIiRY9ECbLJpNvM7bSL9cra/c9IrL9NfCXLnHgpxJ9IPZPJxDo13dvG9LPLnVLGXEqQYpnazZwf9IvRXfzJp
enZzIYhogLJPXnGHKYwDUvQfTRbYk/bosxMXd5E/PozYsxCvF3aY7qcYs/Pyeo5nHqPjQDIXCYjpUY9DI3DYh3NreYvbbyMaZLW3C3R4mYycFoyKfnBYy6U/MvCCS3W3OEvYxZf47PbSZE/oxZbHcEzEi487J3FYm40aPE3487W/Tot3afZfKDNEw3N4+4vRHE7qJfcfFvSYCifvYXLEsAWtLk94kPT49vJIJvNkqPOkr43LMUp5aPM4yEiCLEA4
4vJDc4skhPOU2PfE9hJUmEjTTUtU6EgE/KVU9nOZHfa4tXeUyYfBS0/U00k4y/ZUuDG9fBQYqjQvfkxk60q44/J0wTOYn0x03UwTBk+E605k0aJpOvc0304MnPUklfMEwE3YnknvGMoMo0haI4sANMkZeXVPW3O4sMk5Q09E68K0kst0jrPOCsnMik0srnFEWs9acrG9Fs6s/9dsv0uyHxbvIUhowhPsorbMrsuMu4Ns/s5nW8IcvfUMlEnMycmY
ubZsn7N7cHXo2nOfXolM/E34JyW7dcjrFqZspMrSdg2ZIXA8/7bslnbM9CXou83zUFf8D/SWaRaWGFOWecBFcWT/VAb/NFHWAAg2bFYA0tUAkocAsoSAgAGRgoZQ2BgFJU0AAEdlB4gAAJKAIwAAKVVCEEwCwL1jYCIIFQWDIKBFFSwlm3m2YJbEzkIWMiYKVVYM0N7NDHVUrlrD7T4OJAENNTFGEN7l1HEKHkASkPQElEnlkJnnkPni9XDX0P4o
3hVR3mUoUr0JPlDBdGjS8K9DjWvnMKTUsMFDTShVsKzXsIgS3TzWcJ/ggFwBeA8JjUcLAS/DRFHAIWOFekiKbTQCMV8vbU4EwUDDrjaWvAxGnCSIQDnW/EqKoTHS3EyPfKYVnS/DYQ4UbBwWTSET4VKIfB3REQqN/B/0gCPR3BqLOzqKaztKeVPIWiaOrNrIbPQ2zPrOJOShNKgx1MzOvTJ16qYjnJ5NpjzP1w6qQyaRFPTIVwGvcw40JPzNWKeL
aodJmvRPiC6pix6vWv/QCVGvDxBLSgjIWlp0IW2q51zxKkDLWouqLPnIonOrdyGvxND2mspPbxrNquamWMWvGpRk2szyrJvOplmR+v13K07Jao+uerJPWiBrHPYoUmOr2kRsOgWvBr3yWMXO8lRsmG4SKyWORpRlZIPyeUOHqrxjup5MOChoaIhFFNJsR2xqph3LJI+jetpuZz2oSxpMRwlI+upOlL5vhtmpzxJp62Fo5ppypvxNeDT25NlqJokj
ty+oIjlttw815rVqVpz01qFu1rgmfMPVfPMr3k/LhW/NfORVRQfG1gxRAuIBxRNm8PxRKCtjAKJUgMNA4H0A6HqAVkwEpEIEjBQtmGIH0GUGIF6F6BpT9lIrmHIrjnIJuAnCd0eVlXWB8SRG+FeHeC+nZOVS3mbT7U4s1V4Fs3ajUn1UNT4u0IErHgtV7mtTEMHjtRHkEukOkunnlDnk9V0IdCUrrpUqLrUqHo0oHq0pbB0pcsDCvgTSMsgRMojG
sJSvdUsocJdrLVtnzVcMOGcq8Jst8K/EnAhHRG+DbhCKQVQC2ECv7GCsjj+AnDcRwWQyJQHRipSJKrSI3CSoqtXpbByNioysXSytrQiIfDytcqEUKs/soVKHKsnRkXPUau7P/S0XpmBlQcxz8kBm2j+rMQt3ZiCh2lPXgy91wcfT01frUQoYZm7KSGaiIY6nwZsWwZT1ocwbjOcVnyYaGj00uqxw4ZIeyzMwhiJzVt4bchYZ8uhiEekYeUuyYxB0
rqkf8X6UUZpkkZygBzTo0cMnQYfTobjIIW+y0eEch3UfEeJgrt1XMZxwogchrgwbses1erEa+0MhexUe0e7KxAci8dsZYcmU8bMaCd0ascUQCf5h8bjLNPcaB2JjiWcaCezKms2nzpcYmShwWWIiScMc4dFt2DYdZlS28cydBoclKcCZ2Xp3TsMnp2SY+XCY8eJiFzKZYbn3mrkb+WKba2Ueqb01OF6eaRseifKaRo41GY5nGbWjQameIfqSNvgZ
NqyIEHNvf0RUjgAttv/z1gdqdq4M3ogqKE9oqCECgEOGcHoHiHoBaG6ADqMFmESENBwsSEwAZWYF6HjpIMTuFUoszrOsCRadKEzgOGzqCLzqBlK0LsDQM3SahdoNLsOZwStIcoNVbmUokogEtWEptTEpoSxakpdVkt7sUKPgjWUo0LNHUv7uPlXinrPl0qMM9DnrMIDCDCXsfnTX/tKDsI3sPu3rsvzEINPhoRnoFYED8KwXJoBCujcVvrNGCMbS
CsHEjhak+BOHrTfuitipHTEMSvoT/qnVStyPnUyqMTBd4SfHyugfKMXHivgckRPVqJQbHKd2SfaPvQyZYc63hbwYclCafXdfyfZwMe9aDbkcmK9YRYjejf9Z4dqpp1I26dt38c3xp0jY6WDfDdt0zb8i6raK2TDZjb3zzYRIaZDZ9ZGKccrafX/VrRTZvIre9e+sbbHKA3j1Zpmbg2zYRd6hhu7bmtny7Z9bIYUhlpidFpSmLfjegjeHTcOJQxrZ
zZvOocOjyZXfbezIYLjcodXeXb7axwHdHYPdnYgnJrbanbhbhkrcRwTJPbLfenvcNof3BV/LfONdfy/MVitq/xRVKrXTtuAqxUdrAqObdsJRbGJQcoZUkAAH0cLXoMKKVMAaRKhuUUKKB+gFZBxrWgQI4E7wEk7/mbh0QiE6CKDcRGCaCgRWLm0Z2EYOCuK0AjpVbm50X+Ch6sWcW+4RLW7JCzUKgiWZKe73V5LaWKWh6qXR7y115x66XVCGWo0Z
79KTDDL2WcrSgrDuXP2LKUwrKbXBWXDf4KV97mXN7SQpXr6T6Xg8F5XuxlWr7NkWxL7oi0AWoURXhjhs4oqyE90v79X0jf7EHp1mEgHzwQGjFybVPf9IGLOCq7W4qAvD0nXKqcdqr8ciJfWb3N3Rb72sve28HXECvL3s8R2Svd2jHRbszsvTJcvs8b1avGnBnayKb3pmrrEx29FOuAb49SuwsgTiZObrMVafj2ckhXEb1ON+Hj3Nc9M/pgTuytha
zua6uS2lvdr+bIcmkfEPtTqGOqvs97hazvcAcRjm31vjH63hvbI65azthWkmlZTfH8vZk2uShly2OU8bueJXv49maQ8/uU9T2924zPuxva8N3LvRbweB8eToy/XQeYegfJgzJHuGaJbz8PtZvz9+vT1bwMeJ81oQfDuwtbgJ2V8tucdjuvvUedb0RmyLuiuAcUe7F3vnkce53CukeyuKenl6t/FevDofuoTCf2S7EDuCns9yzaeJe8eRGpTGasdJ
fB2Rnaz6t5ezs/gxf2cNfKupewsNr1eVeWH1i4f8SBeWvZe6cRe9Edf+eQcrylrrNueZoUNHeUdDybyFGIm8b2eWd9zPe6K0aN8bsg/FtsFA+1zrz23mmEm1pLzw/R2ffgW6fR9hns5bTUQnet8ask+uSc/u8qeZjtegX4/Ufi/upE/o+I+Xsc/G8y/ocTkAfYSo+wdg/UfVz2/nfASPea+t8u+/sNslmyqVmeW1m39LbNnraAO/8gK9mQODmQCI
OPaoPICMKeBiAULDhSBMAMKML4ghAAAVfAblGAGoOARIfARoY4b5qOX5+OFsUVccVdTOZ4Jimjlg1SwMZbag47JjsuiY1DC8U0AxqdeNxybqiEqE/HcSoJ07rEtROthcTkoUUqT094/qb/uRxNShoUBmlelqUGnp6VWWiaRevfFMor1dOvLdetZR8JGd7KuAGkGZxASCI94VnP4AQhHDUQ9UDnNtFfW4YudHObnSBBwJ4DZxUY2rPzsVTgaQBqEP
9Q1iFxNbhd8i8mCcC1CtYboJWa6GBv52kEixUu0iU9BlxvJx8m+52WNvE1MEk8De6GEwTk0r75QaKR2Dvhsk15PFHBn/YmP71/5zYnBV2E3hm0b45Nr2a3ZnsDXcH/96mrgmYtk0WyLR9eqvO4MM3aw3kCMf/Zwc0iZ488ucljVPoslt5MQqCPgjwQiRb5/phm9NeIT6yRxpDFsVHSoU+mqFFCIhaiLwbYMWyEIQM4Q9IYC0R6k8vi3g2iu0NKFS
4uhQwl9mpkfybNTaE/b9j+RVh/ltmQiIDgvyAK4pwKK/SCqcwkAvAKACsGkFgQpSuw/YuAI/rMA+DMAaQGwZgB8GUAUoOAWBO/hAFILEcE46wV6LUz0b0UKCnSZirQTo6gDtAwYL4AAMOYsQgRMXSACANQBgCQ0EAkQnxwkKwCO6klZ1CJzdRIC+6uAievgMtDqFMBNLLEQpwMJMtYwEIiAKYRIEcsyBy9HTnuDXr6d+WtA4hDvV/g1AmBhnSVul
XWhVoPKHbUoJfXBC30hBnwB4ACFKj7BfOyRHQQB1kG0Jgu0wiAIAy5HKCYYueHBOoI5FaDEuerFLtUQMEutWi+OQEcGAhGDZwR4wqbJMPfYKiZYsw39v+X/aAV7ai/MDmbGOZQVoOOFXAGyk0AUB4glIF4DUABAhwYCiQegPgkdjdBHhzwv5q8JTrURRhtBN/rZyeC51Pgh7FsP8MDCNDBhiLCuGXQqG9CC6UImEYITgGN14ReLNuoS1RHd10RvL
ZAeS0Hqyc8RI9LQi2J0KEjJOSnQwqSOIEL0qRKacgbSJfjUDNROYIVq4Q6DsioGrAr8PggBAwxCE5HAUVqiFH31awecbyhRFeCSiP60o7+nKPkEKilRrCCLpeHRC+INRs4yAMIlgYAcEGzrKqq6ynZC8mI+QiSI1w/F2Q+eWXb8bMT/F1ssuffbvj63/S1dHkQEwyAuybZpQYJY5X8bMiiHeRFemPOdshLPK1lj2vRWsmbwVqTt0S++NCXzgwkvR
cJI7Zotb2CHNdve9vRxqRKQy4SC2HWQWkr2JjMTuybQ57PBLy6Ji02ibfhsM2om1t5ufEwyFYNV4xCmM/gvTKkKaHpD3gOyISez0KG5iUMDEvGsMyh6hC4yOY3wbXmsR6TihWSQyWJJwb1CqGXEjjJ1ysnnoNJBDYZuzyUSBDFsKUNvkP1N62SFoNkwCXpg+G+8JIg/VHKgyy5BSvesTYZpsHcnBTjGkUlPitA+zATop4U0WrTggmKNrEXklCBZM
4kcZ7J+mE7vlMaIJsIehbTwUVNSYySUhTEnieiTfFJIipU3V3tYOGJKZGpHGDiWOSm588cJ1vGXqVNLZdZ9akUZqQkPK5bJRpPrPWmxIRLPsr81vT6gNOMF0Si2+UrKZMFW40SuG5QqqdtJcmm4KJok1EDUIOm1Sye5Qw6d2RyHl9Fkl0uMqpP0lpQ7potfybkOeTPTs8zkiwTkybICT6GAwx6Vsg+mG8AZxk26bVJH5Wj5hH7OkeWnWZT932M/J
0cB1WHO03RGwk5mvwqCqhUKMFFCn7H6AbBDQpKUgEYBgL1B8AkgTQP0FmLuF8O/KQjkKkf6rAKCuNCjjcGeAZQc662Ftl/zbG/SUQJ0kEdwGPK080WNdUAZi3LHYtIBCI/FvamlnCc6xclTEU2LQG4jrQ0ndsegJDTyduxBAxlip37EadOWZlVZk8LHE3iygLIhyl81FbFpzOmgitAiBf6TgOWK4xziLOODrjVW3AThKfXShtxEikg+1sl25AGsJ
0J4sLsqPNZbBqI14+LrayKqhzdBj4tLi7xfHol1p8ieaYLPkmLZ/e8U0wf7wOz5y6qlEvOWpLsk5SEajkoqXJKrnEwzp6GBuYDPMlFiEh100wbtKnZdyfpzc4YsMwklVthmnUqdg9LBk5kB5DRCec0PPbTzmcs8hSXNJvJLyrswM9DGvO4l/SEJZkxRD1I6xbyHI2Ew+XvKqRFSj5HxC+WfL+KNSkhJ8m8jekWnm8CJXRNKGPMIlHUipp1SaeYMJ
xvSehOXaHtnh27DzMpV1fKaz3OwHzuyp1B+Vw39z5TacsPfCar2QU9zpezUDedligWiylpcZVicRI5LYKGi2c3kiQrcHHSy5WCheTMVLmNyFSFC6IaPKYUoSWFtC7yK9JunkKOF+UMhQ2xrlXsi5OTPkhqUrltyFSv8k/JfJDxeCjJc8rJDrW0jCL2h9ghaK3MnkEJpaN88kjTi4WWCpFwNUGQopKC7dqyxi7obDkhlvtoZNo+GT+2n5/sbaSw3Z
oAVAprDwOYAd2psKxlagHgQgeIHADg4dAcKhoV2Ef3qAbBOgR/TQPoAoCVBoxD/ZOqgBSjcCvhHMj6L8No7f8ZFpQJFtwG1KVDq6GLLjtLJ47N1oBiIglorNrFyFSWes5sTrM1n4ix6EnRpZAEIHmcyRFIgcZp0gDacFRfLGgSwOZGTjf47KGcYnLnFnjwi2IB4OTQVY7wNgPskKvsHuBVpG4CRd+rqwdYyCI5yVSgZAFPF5FzWFrZZRA2tZWy7x
B4qokayQbQQjBBCz1h3JYZNJvxbyoqWQrUV7QyFQYGquIsnkjUgFOkqdiotlzfykhhiscvQokVOIwFg076bUP95SSzk9cnRXUJeW9SAVJi8knfP2kQLBF6JPuYtk5KnyqFDCjkhgrGI6Ltg188lbCo+5KLcl1pf3syo2RQrx5OiwpZivvwTCbFz+cfnqHsVzDVYTi2fssLcWgcPF6MrxZB1tiQEOgMAO4P0FuB4VCAxwegJSCP46xKQ9QeAPUDtm
hgCOPzIjrGKf7rBz6xTdmSkqrRcyIW6Ys9oXG/5giTRwsgEeCOKWccOx9dR1OUqgHcgYB1S5EU6hkLKz6lbS9We3FbGBosBcnCNTiIgCdK+xBleeibOpFctBllsqZaMuM4OUMKkyp2VZ3Sh9QroBCD2bwMFE8CoiG47gpOF+CXi9xOysOXsqC7HjzZxys1pF3RD3AE5mg65VIIfH6C4whgzOWFhdXAi7J5o3lZaP5VixzZtoi2g4sRlirkZKw9xW
jNfDuith6AZQBwG6CkBDgfsKAIBAZSuxmA8Sl5ph0IA4U1g9M4gvf1NXMzIAoqbzmfOtXaQrw1HBRTC00LiCWw+S/ypkLd7ACOOtdb1bSDKWyyqxAnYNUrLqVidVZyhSNdgK1mxrdZ8axTgbOU5ECU1bLCwumrNmCqhl44m2bgEjAFqmReoNgW0geAfA58aS/kZ7Pc5KteBQgoMGiD+D/BPkUHbZfeMPEZE7loXNKjMtOUvB0Qvayjf2pTmDq9Rw
6g0Q8qxUvz2c2kJ9F+ND4Q9fJsE0aA0NrIqaT8TSPTauygWGb22aU/8fEHGn+ZkpMfK9tmS8F2aipRvPqY5vqnnYXN6vd0p4M80kTCVhuCjPCtXYUYlFDDLNo5qm5UrJSbU3zZFp0xhapk3mjaeZqfnDD9Mrml5DytXZpbvlepDTVsm0lZCviaW4LURKJ4bSgNLUtYiVvF4El0+Q0maY7kc1Vb2cHQw4itLUQRbhSTWqDClowwncAt7batnFq9zZ
bBMiEtRCNv0z/pTuq7Tnnony19D28g3Obd/KgWlRv5p1ebRVuZyjclNtJb+dmTW3RbFtrmw7RlrHL2dxt38sbctqO0NEroBKs7VOxkbjbysq2ibZsEs16I6++fasgdp61/q9E/4gHVklLLWKx+hyoVZPyXXQykZOzefpKqX7rDZVq/eVRUCwKCgYKe6jYDAQ+CGgQgOFfAPQE4AwEUoiSx9ckpZzrT31E4RSNzMhaOqf14ICxUqgA2oB/gqLEsVL
ODV+q5Z1YmpaGvg0YiyWSGhNShpaXgaGlkapNcYVKA9K01Q4mkZmoZHDKt6Oa+gTBQo0jKqNX4G8FRCugLKq1flVAGzNc41reAJMNxNgglESCpRA6/jfKPbXRyRNkXerHggk1a6pNSXVOUOvuVIRR1I66uY9pAUBsd5otQhqHuD08ReFDy9SbduZy/KOVWcoSf1tBWVNo9l0JIR1oHJbU49zC/FatNz0oS0oMCrqSVBXml6vcH87IaPMT3V789gp
PFYiplLlbO5WkrPczmJW14q96GTveNHamz5y9U7EcptoSGbl4FYe93unqcQoZ291mbdinoa4oZu92Wf9NwkgVLER9pvWnOzoj2G8wVKGEvXlxRVY5D9n03vSfqn1tYlip+gbtvs32uJt2E23PMMzE1ILj9c7BfWDqmHzrhV9oxYb/glX7NXRm6jGR6K9quxcAQgOAr0BQpX8eA9AW4JkCwKux+gLQfQIWjvVkVydJHFJUcDfWgtP1WSvmYGmflCy
OK+Y0EZ6rA1NKfVQlXjtBqREN0Q1XdQXQ2MQ2oDRdGAtsWhs7FqyE10ullrhspF9Kwww4pXdmitkTjc1uABlJrtV3a6IECWbBOT284X0mN2YlZQ/XCLk9cQLUbov2h1Z8bAucgyOY7uE0nKXdNNMkSUSuXaC7dtyxBgHoU1UMdF7PGFZPPZ7n7nDWDevUhE67M7y5VDd/X4aoZeGQj9DfRTk3Z75JfDkwaI/vsNGwLgjcRybo5NcRsqAMM3Vw/4j
IVuGAj/u7LKQeoWJGPIX+60T/qh0iqFhjouHc6NRmHMZV3izGajokAbAUKHwVUBsAZRwcjA+CSQIEpDhGAhAZkIQChVJRk6mZySopnVqIXU7G4X6jvozs9CiN/55fKQBQb9mTSqDks0pdzqg0t0qlCs2DbUpJYIbhdHBzDRrKNDi6aDOAvg5ccTWGycNanVNfhoV0ZrzZxGyQ6RvqByHLO6VCJP8FvDnkBBFaz0DTU0MFKYYskGmlssMM3KEqra0
w4Ko7WBhzxI4FyBdti6XLs1Wo5OV7pk13KnD4R6Fc1QqklRFNqC7qoXq0jXbrSUE+PDput7Balijm2nH8pPyfatiNJ/zJVIS3HFPSxZYiAvsNz/o0mwKgrcKVm2sxgt0phqTycuhvLa9VJDjOZrlPNJzN4tUrW1nM10mdT5GNrXknM2uaJwtWyLFrTEyAZppRCvptZp775QoF03VdoQu1PNJ/e6p74sjn77qbdtDkJRahNdPXZs+P26qVRPe1db+
JwZ7001Sok9brTgZsKTZvWq4TzNuEkCR5L/kz4vNRo2IyUGr6gTMpL+ws7manlh9ozuUkqV6YLOZdqcuc304IwVNwZcJXg5s45pTNJt9G38xxh2eJgim3c1Gf5fWcSafLDTMp4s03r9PjnVjpg0vkHsN46LZzEphbWdgSPEwW90jHRU6diklmtzhTSFdYkiOxD2e8i9Ibuc+n5HDI+ZjM1Q3cM4rmMQRoSTrXFPxJuFQZqs9efoYZGJuVDQ89vKj
PVn6GJ5q7ClpiMTnDIiZ+0w8SEnfiIS9KwFemZimpSLz2Z2BchfnllmALXDMhVecQvS8yFOtJbXjU66/n+qn01fZ1xvRPnkjdiTrqucOg2Sizlk0i2FlX35TqLdOJBcpLWnQWezPmuc61W7NkrctiTJk8JZCSOaoFi5kIZKbWJcmr97mvqUltVOOa9TzSPs8KTQbvbnihWE/OqauiOb1TZuXSyt2VNSmVuap8y45q1PVbESq7VS+lqXNbaS+WWxr
aOdRKOa5LzyYLfGZsvBaoFNuG8oZaUXWX2cAVrqW5a8sVyhz5bAIeaeGkIk8+5Zt1hFYhCdd0VT+8od9qSvVdyhKWjRTiu2RW9sV6Q5+aDg/NxkSLE00yXBZxX9T3zuFw3mQtEF2nTeaFpxBNrN5kG/IKWoFS+e7kQWt9me2i0kIQspTPpt50805ImtXYcLY1w3tNZOydcFraejC+Vby50WSmLV2iytf/NrXPpvyxK5hby6TVDre1li5Ob0xhGZT
bF/c4JJ3OmWVzqpwc1Sai38WPqzVe/UeWarrmGTCJWfd1AtyfWjNJ3LwZ5cAXSXlzy1K6ln2isckvBqltpIBnrY/WT8cxf6/lHVPTG3raxdU7mUcsJDPTL12fD1sXNZm1oQN9tqpcz5iLYbJyFG/uwisjgrTjN1oSzaKkhX+eD15nK5pHAQqZjrp3m42Zmw1X0hgt7G/Yx0Vi38bLDIC5zcgVXW2eriMhZH1WsNXT07uYqxH1Otq3CjbVk5FlaOu
88dF3lLawDmWsD7Tb3ZO7iLcWzhFLbYPBW2AASz23Cm5t/7jUzb09MSz6pVBnrd5I60d2YFkPAbbOunp2aQdhUt+JOA0qnJAMEs7eBslu25tNk9i1ossn5Xuh34oMI7bMX0N5jJZsK8dcduF34wZR2xRUbtGOKHRzigA64qAPSqQDyOnxS0fQAdBCA7IIwBwDHCEBCANIfAB0CEDXMNgfsGkPQF5SYHGZFFOMWibpNzG4gRBzMd/2fN1N/1GxsIv
oc527GmDPOhg0GqYNwbTjQuyXZwejWaEeD1IY+w8YEOz0hDvS02RQNhlUDldJGsZQ5Tjr2zPCjsyjc7M9CGJLIhiRZbwFXSm7fZSaXPOwhBO2xeNCJ8OUiYOWP2jlTuiw5eDmxGQ+0Nh3E57p1GOtZNvuuIwUYHJDz+9jJjrI7ZZOkYp8yetk4+ca1PXWtO5rS1N3psDadpYW8ocFpztc2S+Od9S2sRzscOa9bDks242lv8n/bYjxUkLdS21luVo
jmm0TfjzGmZH6N/zK5ptKLtM8o+XqFnjLsCqIdC6jZsuurviq67Lohu67SbvNGICFQboBhXoBGB6ghAGoNsFJQtBsApM2YPoHZSVAMKvQFoBManvmrPQ9WDOinXJ6pieZGY0oFmLVRr3eAj7cWSUvA1wjcWBx+We3X3snHEBbB843gIeNi7uDBI+48SKNm335dLYAZZ8azWaCpD9AhWH8bcqsIaajcbynnBY2IIClkJ5Y+ODcQkx9Dwc23dJvt1t
qUTSDztSg42pKoMHfauw0M4cNPj0uBDxZ4HrkcVmm5u+4kwMSkcfLCVujudYKoMcIyYdK62oyjPXUNHG7TRsAxUG5T6BuUiQBAC8GDr0AYCHQDYN0FpT4B+glIOAJUBwoBOXhQT3gHRtRagsCoC96JzkuZXrHOCBS1dJveSeQbKxaTvnccYF2H2cnl93UAU5jVFORdV9p410uNlvGKnYhqp8/e+Ov3cA/QBp0fVYSNh2E14cKoA4SxdPr6xa8nkY
j7QDP9x9hxEyYfgdCbTWaJlUbWiSDkdpnkm2ZwSbBQ+7NnOc5aSWf965GuzHSPmxHfhxSP7ISErV+xY5OPzk9v11mBTanaVWoLWrvkXCrZN7ItHeW215FGYe2ah5KjpDCMUYclQBHwjrwY7dEWBbR5Lr50qPJJs+veHTxG9CI4htOXuormiN1tKvaeXEbJ+XBQNdEu03eS/4hG8io9fPWBSydgHM64PNDynJ2ZEu4bzNcIkn9JblN/w3LeJb/E7F
oy1bbeX092LzV1W3Nfx61u/irSNqhNtpUMPWkXb5pBNuCaOYdkTVkd01Z1qyO+rOTfS1I5ncr2ESXDiZGQs2kiSrpa7yd+w/ymjvAdrSdU9NrB6HudafjRpPlLPch4A3H3BG6G9cYI2TX2eG/vd0ddPuXSK7niC6W/HbBeo173ki6TysAeL3LpPtyB4tHCxZ1MMj8pUb/01GXF8O+uxuosdXPt1dBIQNgCwrMAiKtweoC0FmAdB6AHQGkCgduDMB
9AALs1SzLQA0QUe1OtbRC6dX8zkjML5joGHncvLtj0Irndvf2OVL0nNY9F9k8VCNj8X2Lrg7i9aVdj2ljx7DUS7KckutOZLojdU8o21P8wCSj++K2/tFqrwG1KBKckN2hFeAtBEByFSSDk8KI6UbjVA/hN8vYHArwTYoJjkgNa02wdB3Fxmfajdleg3B/K8yM3lUmPWvV/6bodNtyhrQ1FRa5/nM347Wl9i764G3NRH3op7R+bm7yFzNy72uIRq7
Z77aX9yXt3I7ZvB6LlJ/2yaqOCKkLdiYwk+ro2Q2seIS5lUv95sEqkFePqer9j6s+hUdfX3ezqD6SF/1V3/9t4wA2Y6Q/mxQDqH1oJSEpCHBwgNIBWNyg6C4AYCRgBALcJOCRKKPT6iAD/HHBtxQW2pBj0sZ/7SmWPZdUC9Lc4+ljaDEgHeyi5g2ZPBP9Y4T+wbydifT71LST8U9Fa9iZdkAOXQp/6VKeIdXx3E2p9cKqhaX0y7gOTw2p1hlIgDp
VKZ4fqXis69wIOdA7s8tqHPCg0MKieAYoOIq5y3Kjic8/4nsHZVOV/JpJNH7mLpDSi511Utg0DqsC9k9EdUuKT5u7J9qv4k58paGesZj7GKbve2RIHxr8dwOcGaTU2vZ2V9VRIDueX7z3ZA3Wufyk1pcJr7xq46djsmmnJlrq/f4baofvqvqly75G9V451mqJvxRITdzdOJE9fXuxTB6G9wfa7CHsbxc+Q9yrrH2wyQIkAoD6AwgRgGADwFJQUoa
gIcY4HABwqEANg+gegNt+SURJRz76oIgsZYrf9SobqtneRwRe3GUn9Bh74wcdQH2hPTwkTxcY+/NLCn330T795JH/fyR6nIH6IcV3kuJD4P0jUf2h+cjFD14bzvWuAfqGxwbL94PcHQj8RMftnuZ/y6PHImIdBP9E5iAhAoh3d8hrB957Tn6jnxJRp7a1zKm0+6pB/oS2m5t9/o8pWrw9xJZkdWnY94tkvqk3P+CZXNlGE/BRi0uc/gtaDLwWg01
NzdV2NBlF98oTS0FN5yZIRYd+barRWMLfUdhNNZfZagisYAuN3WpPLZAI3dTNJAIQCS+F02gD3tPSxDsdbBog5sAA3eT6lq3A1ygDQ2f8RNNRrJMy6IIrQm3r4YzMSzHMWAtNzfMyrIgO21GArL0YC4zRgP/EfLcbjoDILDPSoCmMQuQitZregLdxGbKKwUc1oF20/lZkSk3t8PuZQOyFGGdt1kD28KbVTdFAkySTcTuHYhMD5HdQLMF3/KNgf8W
SBDG94oydbXv8uvUFSf9v5CjGa97tQyHe1SrCwLPNGyNAOa9gdW+S1caIcywho0obwKCtKvQ90CDD3bAN+h1TB6hCDEg4AJegSAt7nKxVLdR2Bo1HJRW5oybVHmf87IJZAkCZyb3ipssvYQK3wtfL4nSCueGG0MDcvKL0Zt/xOoOF4isFoMzMLTdoKOlNbB3k0DT0Mh08MX9KxVfZwdBB0h1K7Ix2G9AOUx3qNl+Sx2ucJAI/kjBCAGAlJQw6UlB
qBcPUgBvVnAIwH6AagCgEwAJlCexNVJjHAzrgDvC1UyVjJE71O1pzSpHO9DmE2zFl8/K4wg09jZFz49UXJ7xYMMXV71ydsRfJ3E8z7PFyr8G/UpxeM8NYygI0H7UcQpcu/Kl38dNPA+m09j6d4Fs5vOA4H0NVxVAAM9QTatVAdgXP4DRBn6fpyx9Z/ez3n9BXJz2d0UHLl29kLlDQSlcvPZtR88iTGnxSNc2EsxM19/G2yeQ+Q4/wFDNNcK15Dmv
DI20gipWWz/FHNMhSlCLXP2wVCbApXB0VlQ5wPWp2LIUMNwM7VySS1IpUQNHYh3ORU3MG+HL2aQVtHRTjN6vJ2yrwSzJRR20urRRELkk7TRBpxXQ44m/kPQ3Ji9DNzF0M3MhA70Of0tXbL0eCkVK3D2Rv5LdyjCSoX/xKhmvZe0+E83QLQ9dXLYR3M0bQxN1XZkFLS2QUWTUeRqDhSL5SKCUoKMnM0ywuUNS99NbR0rCPSasMLw5QrSXiCHTLlW8
stJYLW9CEeDUMNx2LLsNgCYbJ0PDIVLY2xNCRQ2fELk/bNHltxvQqcO95dQrfBLDOvWdwj4SwkoPNC8bfsOrIZw1cPnD0vSrwyMNwlAMbIh3Q8IwCh9ZWxLCjEEcIqkbQ08Nq9WqdizvDgFLol3DxwiqUdsnwkFUIkPwx3zGDv9A50G9pgt3xG85g85wWCUPXxXQAQ4bo05QXgMmXqBlAV2E0AoAFAhgohARoH1gnKM4IfULg6ezaRZ7UFnSgIne
nUY5iDNig2tngmIgSd3gqNTLEvg1Jx+DHvUvyycXvCvze9gQ6v2uNa/CXQw0SnZ41l0W/WEPeNCNUHxU8tdCH1/hxjVEK/stdH+14BsQWzh8RxfVsDBNjdYf1Y0zdd/nY1Xoa3R40Z/GV2MMaQxz3x8xnEV0yo2kM4CZDSfFkI91pXSnw5DHDLkIVdztJIQqkiHLV0dtmw5KCHdx9dahtCavZ8K+I9XG/VqCOMQfTLI3lZfTu0bQuqypMacBt1YV
RoXakLC6aHbkSiwYEqBCj2vZqHCjGycNy8i8YOYlyjWqKMhSipyZW2a9ByWfCiipyMfUv0eyG0PnYNndvHBsl3PGlSCUaRqKyiByRqN8iuiWnBpobwxHHSiUaKBQ19mogciaQ8ESr3/RXgfcKwk+o9DGW4qJOOxVCXoJ/2KiPqdn02i6aSS0/UQg8rw8CPTfaLWjLoMUxOjuwwr3+gPA1/wujNw73if8PA9n0XC9o0cNYC8zMqJL51TOaN2c/w8o
wAiXfICJrsQIj33mCkdCCJbsIAeIA6APgfdVuBZgfAHgAKAV2Dg4KUfQEjAT+UgDg5sAJP0uDxo1gOp0lkY7yzE4aWI0ojqPPP1A0djRF3oii/RiJL8hOFiJVkgQokUpYbjD4KxdIQ/iIB9BI0gWEj4QzNERCanUjUNBe/BQwRAWoBLHqxMQXEPUMb6QzzvpiQizUSBXoRsHf5G1Iwzn8BNPHwAZTIwnwxMKITwOsjNRTf3ZDt/OTV39vDJ5RWd7
oghSSFiuL3ESlyGBd16h8pciyYsGzU6M0RcMehlcCpHRMICliIP90IsBTfhn8iOo9qyEkJtZ7XEspHVbjaikkNRj9N8pDFTDDVcHRkhU2LNqm/EHg5cNMxv3N5T/da0UgJh5W3COI+5HbCAMKZacdAPvDssfBBiwdkSuM+iJkXahUlQSD5Gtwig6zw2lu4ht2/FSY80MKsQUP6PLsAYqYOOdjHVdQR1gDb3xR1ffdAB4AaQFChqB6AfQBgBJASMB
DgR7TCk0Aj+I9RwpnAZ8GwiLZbA2nt9gcjkIjkgYmKXtXw1e1hdANaiKpiuPLe19VePANUOMMnZiOe9mYzmKk52Y2iIvteIrmLk9oQ4Q3vsRxQWM79hYqlyjFpI5gXkM5IiyEbgfgZSLxD+BRjQ0jiQuuBOBfgfBHI4eXJtV0FZRbWKjlzDcZwNiuXdfzKIKfLf2p9LYo/0NwuVdVzOAsqOpCcDbY/kL6CKHBFVYTA5IIXLi7IO+MUR/TKSEs9ya
OdwzdNzQRNmIxEthLnclFGUKqt9NORP4TahBML9sHLThL8jVEiRNqEOwq0NBsrQ8zVhhxE9hK9wSbUxPkTVFAcOKNLtC12ETFFWxIpVTFFuONIrQ3r1Hi9HCYMOdodUVSnjTnNdSlVxvLdUgi10TQHZQOAFoDYAKAGoHuYcKSQBDgWgZgGOBuUeIGUANgV2Fxi8IhMTFk3+Jsjp0HVUiMXs2xKnVZ024GiOwFC/CpQ/j+PfnX+Dy/BQj/jwNVDXB
D3vEBOTUwEu+zhDIE+kWgTVPUjQeF4EzUTkjyeWzmDAFIwB1lisEkKjRAHge4DnwCEykIMitYh3VGdyEsyJc8b+ARmNjbDNkO91fPJyP89krJVz/k84zOSd8K7RdSqMtmYCNmDQYsCPBiffaCgqAEOO8EwBd+UgE0BjgUgFIBGgSQENAGUUlBwRXYRgRPiYxHb1FQLI0JxtVHIQpN5kSk2FgxApITgVHBPgBbBz83EYeWu9uPX1R4BZgObwIRedJ
iMZif48NSk9kNUEK+8eIilP4NCXTpIEjXjISNJd2/ZTyFiBkqlxxjhkq2Tkja0bECuhZlJHyNjMEokNWU6weuHOANYmBxx8jInWOyI9Y5f3WgzIEn2xMbIjfzsi6Ew5IYTuQxV3NC3JHQLECmzA1MFDDQhQML4tILiQ6ClXNFWNTnlS6PbxtbcHBD18FKdhkDaheqJShDQ6wPtTZLFq20CXU9ag/CPUqSwTiwARaMW1flHaO20BrZNhDDCAp1PEk
3AqOO/kh3KSyPCnqP1NC0Qgr1L4xKvHNL8gRolGBiiaouhRiiCootPvkPU+OKTDe4yr2two0uhTXdAgi3ELTlaXahkSsTDaRLTASG0OWiA0i6kBsrLCILTCh48tKHZYkdm2HTdXcoTHSc8CILSsFpQRLS0Uteyz/cDfZ5CKCuuXuJ65vrJnw+slbEuOl40A6I1f8CLD/1cQRfVxA9NvxGOJhx/EKBR1ofAr0g2R/EU6hTia499OslufO1O0SwsKr
0YljU19NCkBgwozSkUtf9KYh403QLOwn0oUx8h703TUdToMnHDXCrvcKCvTdNN1JYZYoiwNLCL0x9hGFAM/hlUtp2VIyKVVQojNgVN9YCRAtXNFKFozdNJzV2tuAkbmxT3EyjK4ZPLFKCf1jNTgOYDYFLY3ygkMw1LMR1TFKGEzTedc2AknzOjOV84yAKMdUQyEDK14TeYCSwyGLcjIWh2eKTMjIlJTTMVN/EXTVgtmMjtxwUjM01JYk4pf8S1DT
TU/y4CE0k6kodxQigPbYY00aBcyr2Id20gPMsshtDvM5TO20oMvUJ8yLqLDL/EQspaJsyIsj6i8ydtezOQzohPzLiz+MhGgkzwsgLKXJ80y6DBVeiR2wxIMslCXlDzfSCVIc0sjGwKzaTLLLgxfzFLCCyTUiTJSwvMpjPqtTM4gLczeTbbDrY8s3qxKym2MLL4VOsjrEGjeQmrKGy6srLk70GhMrOSgpJBoX6yFoQbOdMqswbAtdGwTNPbkfUp4k
xB1s9hlWzps9C37SviEF1tTOzVbNTTu0vhXmzFEcNLWIoEHbKcRW08LCuynEbqK2znsxZAbSAbd7OeQLsxYiHciIiaK2yptR7NLD+HOUPi8ZEoMFpwZ3dNPbwfo80LOAPUt3TfCr/W8N+y9oVXzRp2bSixkSQnI9g9ShmEs1yTDsh1JtD4czbJmJnOZ0JBzL3W3xLCBFc0O+AZE7P2Bw3EtINIwQc29I8Q2c7LO+wEw35VTjf00hlf8kgr2J1N/G
P9yCDiIftzFzzsV/xhyzwp9w9NXSKRxHBKmIoJvBKmR7JJhcJQnNlz3gILU3Sqotc21zacmU1nTUEzXxuyccZ4EksUWQHJG4GNVmHJyhckRhZzWma3JG4fOLNkezrwPS3ztZctp3mpPc2yH4hmqXq1hyYM52z6lnzSPJQzMcpxDt8VcD7GazGgjUz/d0QPSw1tdtD7CpyqkHnI5Jrbd6JGZ0cjkj6hmqQsQpyxfb3ILTXs6zH2BHTbJAXdi4j4k+
zQaGuKvCHc2yHrUlMNvIUhBfYvNzw+8taHl9B8zvJJyzsEcCADtMgHMHzK813MnyCQvJFssKraO3ICNc0IMUtBEm8Czy/3E4FoDZ0usFoC10q8CalBEoMAHy03WIhskzc0TPPy6NILQLyCGFMQV9z8qHL9N9fCzV1y382fI4CCyf6Uvy64dhCkZ/GJ/OIgjIAjCAKoEMkg2onzDagoxSVf6XLyyIPBGgLxuI9zy4kgSAtQKQC8SSztqKFAuAKYC+
fLjzrMWKAoxh4+TL+BlsKAtwKhuOAvxi0QHApgLY8xXJBk185SGYKRA8/PRSlIWgpYKnJT4HOiLcycAoxgwWixDiw0kQuzz+C9nBpoJCpHFkL+eJ8x5E+Crgv54erW1TUKiClfB4LcaSsn9jc8JpFnD5MofO0K0C2vBULx8pgp0La8PQpoL1C391otrCpQu+pnC3APFJ3CiKyzDTC3/NcKeILOy0LCCiwsQVDCvwscLGkWi3CLbC1MLCK2gxRUgV
KCcwroKmSRIs3zOCmIq9xPEvlXGDoPCeP8SZgufjqNHkzxQhiF4sMBqBDQGCgpRjgbwBeA7mLAgVgQ4foDYBoCBAHJ5skoFzMhrglOjWz4UqJ0Y9YWdCBThUU6WIxTyDB+NQAKINjPY4JZF+Jpjt7BADVi84YlIZj4BNEV/jgE/+O4jbjZpKw0/vQQy6TynRT1ZTRI9lPEjSNWYDFi5I9KAWxSoK8CR9gdFSNFTO0cIlEF1WJZP0j7IkhLWTF/BV
JVFuEL4BVTbxDz1ZDaEs2PoTlnK2In0bY0gu8gCcMxKCFg09FWRKxwmhhDDdE8xIUgq0nRRDzMJNEr4sq8rSFCRESq7FLyJIL8zrzvIJRPNdZcz1IDDqHEZGsTesEdL4S9E0zHJL9MEkuZLdcYcIJKXs4NPixSS0zCpLys/kraxRShaD9s23CfO20U4YUo4xJSy6CDClS98UcSJSj1JWMFS2LRDCaSvJG8D5Snko+JysdUo1NysPUod9hyTEqCFZ
0u4CFKjS3s23IFzGgO5K1E/nkalDSt0opNSHU0pLDo87hO01SHC0s/EUsJUP1cEJT0vZLgJOrJSxvQlKHUzD5KxK9LRoHrUHi2SrErxhWVJMqjKqYGMsTLrS1yV/z4skTJ/FIyjMqYgMC9EjxttSzqn94uwmsr2gfC3uUa5n3DjN7k0pf/LHJb8nLDzKUhMspyYfIBMoC9XSnMuSgtyTGgLLBQ0cie1sy8sopKGs23FnKBypmxPx+y1yUt5dU9Mu
XKUtcCWxAKsh4iy58aebgcLMi7yIm19CuyB30TMhLLF80pK8payby8cMPKFy1BgM09ytsuzw7wQ8tWpOy0WmRzvI6LK14Hi8KAsyACrLmzgRaT6QwSChXstMLwJV4OvKSyizWwLTy69CHL5MlwoiLkoLGzCRFqTrmnJiS3nyoY8FGwpCKzyFnwtJiKujH8LOqH8qQrdIxsvRpWfeTMRzgilIorLrqd6i147bNirJI7gHLKoY9yXiuU10ih8qQqe4
wKQErPzFCrIqFoUbM/MvxSbMErqKrCsVNFs+TNHzSK9ipf99y/eRUrUKwal0qSmfStkq9oF8o0qTK7SoKkPyw3j1yeaeKw2l6oy3OEr3S/2LTKCgsxG1zt8OK3q15TfXLxsPK5pFVLLiSyrJItEuEq8CIzL3E3TkCjItMqskYKulzQqqPHPyRHQKrwMu88SUULVK60kSqIC5Ithptc6Iviq7EYfNZgHLQKvvK4oqhjqsaK89jXTmsuqphxOS74Cq
D/oMAqDB4isxDwkZcQyQDNqtK30yq52bKoMqPEQRNY44qqysxD8pBCq0riCwRJwrAqizTAKMqyapgLL86qqtsuq4UzAKm8nyptNpcx7OfkmqsxFbLZS1jN4DN07VBOrcmTkuy4GykphBzKS20rfNBwpJDKrlaEcrnKbEO6sryHqpJDxKZs00ueAacpcpmtEqnyDBqdsD6p/Eoa+alxy4arNghrpopkuTK/IL6SJL/MTqzsS8kBTJksniYMPNC61Y
NIFlxwHGsTywC+jNbdzfCKtUdK40MIXyw3IdwnBIciCp3Na4wKKlMgwpcNprFTGKNQzGa8Ejqs3qkZhByq0U0ogx9tCWr7Sc823BwrzkjpEFzea98U0qRaoIvOrAScOzTje8qtOxqXEtS05yZSsmv1rc8X6taia0trHCchqvGBlztaj4kpq7MJIRQVeq6sntyAy/NhBzGKJ2ttLyITczOrZagL0vy1ayRzpLSoMtMvCX892v1KacirwYc7qvlKSF
/SgOq7Ki842oZVh3QGsbLvKu2r8hs6wWu8gjgVtwBAPUvqCLqIas4FbcmojWuJKk6tWr146ShLCDD66zGrQrm4p6oFrQ00tQvlU6uupkTvOJur7qUaomtf0tXN4AyMu60esFzO6sTTrYpbBWpCx/eO8GZqVywK1Wic66rEUTjMtOsnlRBfAN/y1avOuVqJIGtGZqTC11MDt169qxkS6wZmriYW6ntmFryatrFtr86vhR7qn65pAZz76wTCgQYo8G
yPr9MJnKSESCtgv6EtEzusoKr2SZ0z0Xqn4GprzNd/hGtcwr/INSwojMNYrEK4+RerRBVNOK9VyyOrErj5EsIs07o0NL+AtLNp0fNiG1EDtNKmChpVzGcu+tfr/MatFoavA0G2br56yJhJt0oPVwTtDiNbNQa8CxrSYDw+b7EsSlwshquhR8USuLLSMYhvuA9XWOrpKICt1P+hIcsOuUkTEjcNDSta5hqQxOXF/Upq0HfCxMT3yzBtnw4vC+q4bC
g0fGGyEchMLrgh3NO33Y6wNhpaE1cNepsbUSTxrLSXNQRosa1zTxvYtjGlyHcaUaTxqCzoyoypf9tsoRrkrPGgzQe5DiF3NDSfIExIhNwoezTX1eQt2rEqT2ThrSaoc0fDsrvGwBsArlqJfLgxs84spPYG4pXFgrbNAhANDYq/JtHwLy7jPMrbNDuotr9MU4FHxJCjvC6bNQxuDUzhmw3HSgksxuB2I0yspoxJ6G8CVTodiXZFGgzzS5PHjrk2D2
Bj7k4ouCSvfCb0WCpvEOCwJVQODjg4oAZwEOA2APGVwA4OSQCMAXgOJTiTHhQIGwAogUDRwMeilJX2A24LMSSBYnSYrzocU1+LoMakmQUDUjjbe1mBZgbAEOBYWzYsJFJAXkA0AkUNmJ2KOYrYp7FG/Q4sZSYQvmJZSPjHf1KAj+GADmxCAVUCj9KQfACMA/YeoBpBlAdUCP5EgBlH+dIZMHxgTpDZQEmVwCKYAZlqPC0CaM+/TY1vB6wPHMJCjd
b4BM9BBM3QMRsQRuGUjCEzWOpDSE9OR5byi4gCEANgXoBgpKgSoAVgPgegAnBKQWFvwBSUDoAVgI/BUFKBjVX+F+SYkiAFAgLYSGSX92EIMHeBT6E4GoSEucErCBQkyGN6BGgSMApQWgSoAQAjALAhCAUKfQFJR0DSMHoAoAHChQoXmhADebeKHA328YU59BEM/mtXImLWPNxAqTn4m70+CePb4NqTfg31WhbYW+FvJSj4JFuwAUW/1Q+DWkuvwh
DtKelKb9AfZlJOLCWi2OJbSW+IHJbKW6ltpb6WxluZbWWh/HZaOU6Q1NBuU1AB5boAPluvoBW/4wgQ8EZ4B7QGK+BHUNrwaZJeKzQL4BViV/afxDkVk5Vt+LxINVpeSJADVq1adWvVoNajWk1rNaLWtkSIgl2+9Qco7WqgEdbnW/4q+AvgHkU4gvWpOXvE/W9Vs1btW3Vv1bDWngGNbDgU1vNbLWk+NlAKQSFIRAzgTNu2AkQBdGoLlIFWKAFEUz
Qj08c/I3jvB7K/+y2A+oWgkqTwBJFwYjy2klLu8q2uFr3pa2peHrbG2ziOHoJPGlJ+9222TwZSeYplPxae2kSPEgIAElrJaKW44CpaaWuloZaoAJlpZaHWqdrEj5DCSIcpCAbltAhP2yOGhJBW8WP8pvKerGVT2nI3VUE1DGZIfoTgOjU+A88gwzPbvi/ZWMjdYjZIyo3WqtBqRwGXZMwcNUiEq1SoSxhNPRi6oEXC6IuidUihUIE0TeACO/iGxA
euSakeAKOuTCo7tgDanA9p4xD32a/UWUCgAKUCcRzAuWtAEXb0gCdA3oHKY5tObzmy5uuaUKW5vubHm2JLgS9O2YB3QhAWMEkg86HSK8oLwHBHJ5fOip1wA4AEWVXbQwLIGIBCu4UGK7uAMruC5KugNqDaQ2sNojbcAKNpjaeAONoTak2vCCeEOurrpYhenOuHHBASnEGohTRMMBG6xuyYCM6yQfLpgIf26EFwAVdIEEm7Hu9Due7ICNDvta3u/A
DXAKAJVuE9MARYFVB1vBfydkogUgCgBIwZgFVBEAP0AIBNRSbth74elNqsB8AcCPAB6IByjgA4AdUHlg5uwoGgBoQTIAqAiALihWAGAduwoAKUCFq/iWQaFqZ6riqnuwARAV1EjB5wfQHVBYRBjrpjIANnt+SZ4TnoyA6ez+O45WOmtuJ7Bejnq57egSv3aTpe9nuF6uennpr8+OgXuV7sgEXu5641WlMw0IAGXpV6MgSoA7acWw3q16Yernr9he
YwcVKAje7Xrl7OAKAF6AUwZUADBVoC3qF7HejIF6Bne1UEIA1vQ9tZ7LenXqP4sAKABgIKeq+jXQEAWYHrEve2XoyACe6Ho+6Ykr7sM5E+43t9phQNPooAM+1wh/auQLPp979APPpJav24eGL6Heq3t97LKU3vtABWPUHcd6QfACjFljSRxRA4uizSbBRm4nuYAW+lUAeEk0PchacICxSNs5/0iACMA2AAwCJ6XOAgA1hiQRglEEBU45hL7a+/QF
N6xWLwj1AkW0gFG6qegUBIAA+oPp3hkIUQxP75wUbvc4j+0gBIAGUNgGcIOgDgFwBNAYIAgR/9S/oZ7Su0MApR6QSAlIBECXAAAAKOtWoBzdb2UgGIBliEaAAASl1BQ25QDlhHUIAZ5AwBnynLoSQLAZgHtAeAbU7LHDfrV7qQG3qgA+wBBKp67CUNtzB7+g1Hn7SgLIDf6P+2HRbBsAIgBv6AklsFf6yek5xMJzmR8FuTtm/QFlBqQUgHqB9OFg
dKBhB0gFEGX+pga/Bv8dfrsBXYFNpyBVQV/rgBH+5/tf73+pVoco3mwgEYAj+Wfsx7f+lsBtbT43CNYHOu49X0AK+yOHJ8gei2QMAwe4IAMGjPeyLn4YCAwaMGTBrHqbs2Ij9mAAnWi2CAA=
```
%%

View File

@ -0,0 +1,33 @@
## Zusammenfassung:
Marcel und ich haben die Masterarbeit angemeldet. Dafür wurde nochmal besprochen, was das Ziel der Arbeit ist und es wurde viel über den Titel der Arbeit nachgedacht.
Anschließend gab es ein paar Grundlegende Infos:
## Ziel:
- in Blender Model die Augenform variieren
- auch automatisieren (mit dem Render-Scripts große Batches generieren)
- Studien Suchen für realisitsiche Werte (z.B. Augapfelgröße, Augöffnung, Lidgröße, etc.)
- im besten Fall kann man am Ende Augenformen von verschiedenen ethnischen Gruppierungen erzeugen
- Am Ende Validieren -> Ist die Augenform überhaupt relevant für Erkennung der Pupille (ein kleinerer Teil der Arbeit als das Generieren selbst)
## Infos:
**Studierendenrunde: 2-wöchentlich? Dienstags von 12:00 bis 13:30**
**Absprache Masterarbeit mit Marcel: Donnerstag 15:00 Uhr** (Erster Termin: 16.10.2025)
Die Termine sind wöchentlich versetzt, also eine Woche Studierendenrunde, die andere Woche Treffen mit Marcel!
Bis spätestens zum zweiten Termin mit Marcel (30.10.2025): Aufschreiben Exposé (Fragestellung der Arbeit, etc.) und Zeitplan
Genereller Zeitplan:
1 Monat Literatur-Recherche
4 Monate Implementierung / Umsetzung
1 Monat schreiben
Am Ende: Abschlussvortrag (unbenotet, nur bestanden / nicht-bestanden)
Angebot: Ein Kapitel gegenlesen
Zitero (hatte er Zotero? gesagt) für Literatur-Verwaltung
**Genereller Hinweis:**
Wenn Experimente: Erst Text schreiben, dann nach text durchführen
Webseiten für Tipps zu Abschlussarbeiten sind ganz gut

View File

@ -1,15 +0,0 @@
This is your new *vault*.
Make a note of something, [[create a link]], or try [the Importer](https://help.obsidian.md/Plugins/Importer)!
When you're ready, delete this note and make the vault your own.
Daily Steps; Daily Sits
12;1234
134;432
1582;124
123;432
1234;234
666;134